Inherited disorders of renal magnesium handling.

نویسندگان

  • D E Cole
  • G A Quamme
چکیده

The genetic basis and cellular defects of a number of primary magnesium wasting diseases have been elucidated over the past decade. This review correlates the clinical pathophysiology with the primary defect and secondary changes in cellular electrolyte transport. The described disorders include (1) hypomagnesemia with secondary hypocalcemia, an earlyonset, autosomal-recessive disease segregating with chromosome 9q12-22.2; (2) autosomal-dominant hypomagnesemia caused by isolated renal magnesium wasting, mapped to chromosome 11q23; (3) hypomagnesemia with hypercalciuria and nephrocalcinosis, a recessive condition caused by a mutation of the claudin 16 gene (3q27) coding for a tight junctional protein that regulates paracellular Mg(2+) transport in the loop of Henle; (4) autosomal-dominant hypoparathyroidism, a variably hypomagnesemic disorder caused by inactivating mutations of the extracellular Ca(2+)/Mg(2+)-sensing receptor, CASR: gene, at 3q13.3-21 (a significant association between common polymorphisms of the CASR: and extracellular Mg(2+) concentration has been demonstrated in a healthy adult population); and (5) Gitelman syndrome, a recessive form of hypomagnesemia caused by mutations in the distal tubular NaCl cotransporter gene, SLC12A3, at 16q13. The basis for renal magnesium wasting in this disease is not known. These inherited conditions affect different nephron segments and different cell types and lead to variable but increasingly distinguishable phenotypic presentations. No doubt, there are in the general population other disorders that have not yet been identified or characterized. The continued use of molecular techniques to probe the constitutive and congenital disturbances of magnesium metabolism will increase the understanding of cellular magnesium transport and provide new insights into the way these diseases are diagnosed and managed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Full Review Inherited disorders of renal hypomagnesaemia

The kidney plays a key role in the maintenance of normal magnesium balance. The distal tubule of the kidney, namely the thick ascending limb of the loop of Henle and the distal convoluted tubule, is crucial for the regulation of serum magnesium levels and body magnesium content. The identification of molecular defects related to rare inherited magnesium losing disorders has contributed greatly ...

متن کامل

Insight into the molecular regulation of the epithelial magnesium channel TRPM6.

PURPOSE OF REVIEW Recent studies have greatly increased our knowledge concerning the molecular mechanisms of renal magnesium handling. This review highlights the functional features of the newly identified transient receptor potential channel melastatin subtype 6 (TRPM6), which forms the gatekeeper of active magnesium reabsorption in the kidney. RECENT FINDINGS TRPM6 confines a magnesium perm...

متن کامل

A new tubular disorder with hypokalaemic metabolic alkalosis, severe hypermagnesuric hypomagnesaemia, hypercalciuria and cardiomyopathy.

Renal tubular magnesium loss in association with a defect in tubular chloride reabsorption has been reported in Bartter’s and Gitelman’s syndromes. Clinically, both syndromes are characterized by hypokalaemic metabolic alkalosis, renal salt wasting, hyperreninaemic hyperaldosteronism and altered renal prostaglandin metabolism [1]. In Bartter’s syndrome, hypomagnesaemia occurs in 20% of patients...

متن کامل

Renal magnesium handling is not subject to developmental programming.

Developmental programming of hypertension, induced by maternal protein restriction, is associated with enhanced urinary excretion of sodium and calcium in the rat. Although calcium and magnesium are reabsorbed via different pathways, renal calcium excretion often parallels magnesium output. Accordingly, the aim of the current study was to assess magnesium handling in rats exposed to a low-prote...

متن کامل

Divalent cation transport by the distal nephron: insights from Bartter's and Gitelman's syndromes.

Elucidation of the gene defects responsible for many disorders of renal fluid and electrolyte homeostasis has provided new insights into normal and abnormal physiology. Identifying the causes of Gitelman's and Bartter's syndromes has greatly enhanced our understanding of ion transport by thick ascending limb and distal convoluted tubule cells. Despite this information, several phenotypic featur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Society of Nephrology : JASN

دوره 11 10  شماره 

صفحات  -

تاریخ انتشار 2000